
 

1.3 

Solution 

a. Consider the PE of the whole arrangement of charges shown in the figure. In evaluating 

the PE of all the charges, we must avoid double counting of interactions between the same 

pair of charges. The total PE is the sum of the following: 

Electron 1 interacting with the proton at a distance ro on the left, with the proton at ro 

on the right and with electron 2 at a distance 2ro 

 + Electron 2 on the far left interacting with a proton at ro and another proton at 3ro  

 + Two protons, separated by 2ro, interacting with each other 
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Substituting and calculating, we find PE = -1.0176  10-17 J or -63.52 eV 

The negative PE for this particular arrangement indicates that this arrangement of charges is 

indeed energetically favorable compared with all the charges infinitely separated (PE is then 

zero). 

b. The potential energy of an isolated H-atom is -2 13.6 eV or -27.2 eV. The difference 

between the PE of the H2 molecule and two isolated H-atoms is, 

 PE =  - (63.52) eV - 2(-27.2) eV=9.12eV 

We can write the last expression above as the change in the total energy. 
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 This change in the total energy is negative. The H2 molecule has lower energy than 

two H-atoms by 4.56 eV which is the bonding energy. This is very close to the experimental 

value of 4.51 eV. (Note: We used a ro value from quantum mechanics - so the calculation was 

not totally classical). 

 

 

 

 

 



1.4 

Solution 

Bonding will occur when potential energy E(r) is minimum at r = r0 corresponding to the 

equilibrium separation between Cs+ and Cl− ions. Thus, differentiating E(r) and setting it 

equal to zero at r = ro we have 
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Thus substituting the appropriate values we have 
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   ro = 3.57  10-10 m or 0.357 nm. 

 

The minimum energy is the energy at r = ro, that is 
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               = − 6.32 eV per ion pair, or 3.16 eV per ion.  

The amount of energy required to break up Cs+-Cl− pair into Cs+ and Cl− ions = 6.32 eV per 

pair of ions. 

The corresponding ionic cohesive energy is 

  Ecohesive = (6.32 eV)(1.6  10-19 J eV-1)(6.022 10-23 mol-1)  

     = 610 kJ mol─1 of Cs+Cl- ion pairs or 610 kJ mol─1 of Cs+ ions and 

Cl− ions.  

(Not far out from the experimental value given the large numbers and the high index, m = 9, 

involved in the calculations.) 



 

The amount of energy required to remove an electron from Cl− ion = 3.61 eV. 

The amount of energy released when an electron is put into the Cs+ ion = 3.89 eV. 

Bond Energy per pair of Cs-Cl atoms = 6.32 eV + 3.61 eV – 3.89 eV = 6.04 eV  

Atomic cohesive energy in kJ/mol is,  

   Ecohesive = (6.04 eV)(1.6  10-19 J eV-1)(6.022 1023 mol-1)  

     = 582 kJ mol─1 of Cs or Cl atom (i.e. per mole of Cs-Cl atom 

pairs) 

     = 291 kJ mol─1 of atoms 

       

Author's Note: There is a selected topic entitled "Bonding" in the Chapter 1 folder in the 

textbook's CD where the bonding energy is calculated more accurately by taking a more 

realistic energy curve. The above calculation is similar to that given in Alan Walton, Three 

Phases of Matter (2nd Edition), Oxford University Press, 1983 (pp. 258-259) 

 

Author's Note to the Instructors: Various books and articles report different values for B and 

m, which obviously affect the calculated energy; ro is less affected because it requires the 

(m−1)th root of mB. Richard Christman (Introduction to Solid State Physics, Wiley, 1988) in 

Table 5-1 gives, m = 10.65 and B = 3.44  10120, quite different than values here, which are 

closer to values in Alan Walton's book. The experimental value of 657 kJ mol-1 for the ionic 

cohesive energy (the ionic lattice energy) is from  

T. Moeller et al, Chemistry with Inorganic Qualitative Analysis, Second Edition, Academic 

Press, 1984) p. 413, Table 13.5. 

 

 Some authors use the term molecular cohesive energy to indicate that the crystal is 

taken apart to molecular units e.g. Cs+Cl−, which would correspond to the ionic cohesive 

energy here. Further, most chemists use "energy per mole" to imply energy per chemical unit, 

and hence the atomic cohesive energy per mole would usually refer to energy be per Cs and 

Cl atom pairs. Some authors refer to the atomic cohesive energy per mole as cohesive energy 

per mole of atoms, independent of chemical formula. 

 

 

 

1.6 

Solution 

a. Interatomic separation r = r0 is the distance at minimum E(r), Therefore we differentiate 

E(r) and set it equal to zero. i.e. 
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The potential energy is minimum at r = r0 and is related with bonding energy E(r0) = −Ebond. 

From the equation for r0 we have 
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Substitute for B in the energy relation 
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b. Show that the bulk modulus is given by 
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From the definition of Bulk modulus mentioned in the problem statement above  
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Again substituting the value of B in the above relation, i.e. 
m

Anr
B

nm

 0  we have 
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Not substitute for the second derivative in the equation for the Bulk modulus  
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From the relationship for bonding energy,  
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c. From Example 1.3, the bonding energy for NaCl is M = 1.748, n = 1, m = 8, r0 = 0.281  

10-9 m, c = 2. Therefore, 
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A  = 4.022  10-28. 

Substitute A in expression for K we have 
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Author's Note: Experimental value is roughly 2.4 × 1010 Pa or 24 GPa. The calculated value 

is quite close. 
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1.22 

Solution 

a. Since molybdenum has BCC crystal structure, there are 2 atoms in the unit cell. The 

density is  
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Solving for the lattice parameter a we receive 
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The Atomic concentration is 2 atoms in a cube of volume a3, i.e. 

  
 3103

10147.3

22

m


a
nat  = 6.415  1022 cm-3 = 6.415  1028 m-3 

For a BCC cell, the lattice parameter a and the radius of the atom R are in the following 

relation (listed in Table 1.3): 
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b. Gold has the FCC crystal structure, hence, there are 4 atoms in the unit cell (as shown in 

Table 1.3). 

The lattice parameter a is 
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The atomic concentration is 
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For an FCC cell, the lattice parameter a and the radius of the atom R are in the following 

relation (shown in Table 1.3): 
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1.24 

Solution 

Planar concentration (or density) is the number of atoms per unit area on a given plane in the 

crystal. It is the surface concentration of atoms on a given plane. To calculate the planar 

concentration n(hkl) on a given (hkl) plane, we consider a bound area A. Only atoms whose 

centers lie on A are involved in the calculation of n(hkl). For each atom, we then evaluate what 

portion of the atomic cross section cut by the plane (hkl) is contained within A.  

For the BCC crystalline structure the planes (100), (110) and (111) are drawn in Figure 

1Q24-1. 

 

Figure 1Q24-1: (100), (110), (111) planes in the BCC crystal 

 

Consider the (100) plane.  

Number of atoms in the area a  a, which is the cube face = (4 corners)  (1/4th atom at 

corner) = 1. 

Planar concentration is 
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The most populated plane for BCC structure is (110). 

Number of atoms in the area a  a 2  defined by two face-diagonals and two cube-sides 

  = (4 corners)  (1/4th atom at corner) + 1 atom at face center = 2 

Planar concentration is 
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 The plane (111) for the BCC structure is the one with rarest population. The area of 

interest is an equilateral triangle defined by face diagonals of length 2a  (see Figure 1Q24-

1). The height of the triangle is 
2

3
a  so that the triangular area is

2

3
  

2

3
2

2

1 2a
aa  . An 

atom at a corner only contributes a fraction (60/360=1/6) to this area. 

So, the planar concentration is 
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For the BCC structure there are two atoms in unit cell and the bulk atomic concentration is 
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           = 5.596  1028 atoms m-3 

and the surface concentration is 
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1.27 

Solution 

This problem assumes that students are familiar with three dimensional geometry and vector 

products. 

Figure 1Q27-1(a) shows a typical [hkl] line, labeled as ON, and a (hkl) plane in a cubic 

crystal. ux, uy and uz are the unit vectors along the x, y, z coordinates. This is a cubic lattice so 

we have Cartesian coordinates and uxux = 1 and uxuy = 0 etc. 

 



 

Figure 1Q27-1: Crystallographic directions and planes 

 

a. Given a = lattice parameter, then from the definition of Miller indices (h = 1/x1, k = 1/y1 

and l = 1/z1), the plane has intercepts: xo = ax1 =a/h; yo = ay1 = a/k; zo = az1 = a/l. 

The vector ON = ahux + akuy + aluz 

If ON is perpendicular to the (hkl) plane then the product of this vector with any vector in the 

(hkl) plane will be zero. We only have to choose 2 non-parallel vectors (such as AB and BC) 

in the plane and show that the dot product of these with ON is zero.  

  AB = OB  OA = (a/k)uy  (a/h)ux  

  ONAB = (ahux + akuy + aluz)  ((a/k)uy  (a/h)ux) = a2  a2 = 0 

Recall that uxux = uyuy =1 and uxuy = uxuz = uyuz = 0 

Similarly,  ONBC = (ahux + akuy + aluz)  ((a/l)uz  (a/k)uy) = 0 

Therefore ON or [hkl] is normal to the (hkl) plane. 

b. Suppose that OD is the normal from the plane to the origin as shown in Figure 1Q27-1(b). 

Shifting a plane by multiples of lattice parameters does not change the miller indices. We can 

therefore assume the adjacent plane passes through O. The separation between the adjacent 

planes is then simply the distance OD in Figure 1Q27-1(b). 

Let ,  and  be the angles of OD with the x, y and z axes. Consider the direction cosines of 

the line OD: cos = d/(ax1) = dh/a;  cos = d/(ay1) = dk/a; cos = d/(az1) = 

dl/a 

But, in 3 dimensions, (cos)2 + (cos)2 + (cos)2 = 1 

Thus,   (d2h2/a2) + (d2k2/a2) + (d2l2/a2) = 1 

Rearranging, d2 = a2 / [h2 + k2 + l2] 

or,  d = a / [h2 + k2 + l2]1/2 
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1.28 

Solution 

a. Si has the diamond crystal structure with 8 atoms in the unit cell, and we are given the 

lattice parameter a = 0.543  10-9 m and atomic mass Mat = 28.09  10-3 kg/mol. The 

concentration of atoms per unit volume (n) in nm-3 is therefore: 
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If desired, the density  can be found as follows: 
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b. The (100) plane has 4 shared atoms at the corners and 1 unshared atom at the center. The 

corner atom is shared by 4 (100) type planes. Number of atoms per square nm of (100) plane 

area (n) is shown in Fig. 1Q28-1: 

 

Figure 1Q28-1: The (100) plane of the diamond crystal structure. 

The number of atoms per nm2, n100, is therefore: 
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  n100 = 6.78 atoms/nm2 or 6.78  1018 atoms/m2  

The (110) plane is shown below in Fig. 1Q28-2. There are 4 atoms at the corners and shared 

with neighboring planes (hence each contributing a quarter), 2 atoms on upper and lower 

sides shared with upper and lower planes (hence each atom contributing 1/2) and 2 atoms 

wholly within the plane. 



 

Figure 1Q28-2: The (110) plane of the diamond crystal structure. 

The number of atoms per nm2,  n110, is therefore: 
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  n110 = 9.59 atoms/nm2 or 9.59  1018 atoms/m2 

This is the most crowded plane with the most number of atoms per unit area. 

The (111) plane is shown below in Fig. 1Q28-3: 

 

Figure 1Q28-3: The (111) plane of the diamond crystal structure 

The number of atoms per nm2, n111, is therefore: 

  
  
















































































29

111

nm/m 10

1

2

3

2

2

2

1
2

2

1
3

360

60
3

aa

n  



  

      




















































































29

99

111

nm/m 10

1

2

3
m 10543.0

2

2
m 10543.0

2

1
2

2

1
3

360

60
3

n  

  n111 = 7.83 atoms/nm2 or 7.83  1018 atoms/m2 

c. Given: 

Molar mass of SiO2:  Mat = 28.09  10-3 kg/mol + 2  16  10-3 kg/mol = 60.09  10-3 

kg/mol 

Density of SiO2:   = 2.27  103 kg m-3 

Let n be the number of SiO2 molecules per unit volume, then: 

  
A

at

N

M
n  

  
  

 kg/mol 1009.60

m kg 1027.2mol 10022.6
3

33123










at

A

M

N
n


 = 2.27  1028 molecules per 

m3 

Or, converting to molecules per nm3: 
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 Oxide has less dense packing so it has a more open structure. For every 1 micron of 

oxide formed on the crystal surface, only about 0.5 micron of the Si crystal is consumed. 

 

 

 

2.3 

Solution 

The drift mobility of electrons can be obtained by using the conductivity relation  = end. 

Resistivity of pure gold from Table 2.1 at 0C (273 K) is 0 = 22.8 n m. Resistivity at 20 C 

can be calculated by using Eq. 2.19. 

  )](1[ 000 TT    

The TCR 0 for Au from Table 2.1 is 1/251 K-1. Therefore the resistivity for Au at 22C is 

  (22C)=22.8 n m [1 + 1/251 K-1(293K – 273K)] = 24.62 n m 

Since one Au atom donates one conduction electron, the electron concentration is  

  
at

A

M

dN
n   



where for gold d = density = 19300 kg m-3, atomic mass Mat = 196.67 g mol-1. Substituting 

for d, NA, and Mat, we have n = 5.91  1028 m-3, or 5.91  1022 cm-3. 
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      = 4.2610-3 m2 V-1 s-1 = 42.6 cm2 V-1 s-1. 

Given the mean speed of electron is u = 1.4 × 106 m s−1
, mean free path from Equation 2.10 is  
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         = 3.39  10-8 m = 33.9 nm. 

 

 

2.4 

Solution 

a. Electron concentration can be calculated from the conductivity of Sn,  = end. 
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       = 1.461029 electrons m3. 

The atomic concentration, i.e. number of Sn atoms per unit volume is 
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        = 3.70  1028 Sn atoms m-3.  

Hence the number of electrons donated by each atom is (ne/nat) = 3.94 or 4 electrons per Sn 

atom. This is in good agreement with the position of the Sn in the Periodic Table (IVB) and 

its valency of 4. 

b. Using the same method used above, the number of electrons donated by each atom of the 

element are calculated and tabulated as follows: 

 

 

 

 

 

 

 

  



Metal Periodic 

Group 

Valency Atomic 

Concentration 

nat (m
-3) 

Electron 

Concentration 

ne (m
-3) 

Number of 

electrons 

ne/nat  

Integer 

(ne/nat) 

Na IA 1 2.5411028 2.8081028 1.105 1 

Mg IIA 2 4.3111028 8.2621028 1.916 2 

Ag IB 1 5.8621028 7.0191028 1.197 1 

Zn IIB 2 6.5751028 1.3201029 2.007 2 

Al IIIB 3 6.0261028 1.9651029 3.262 3 

Sn IVB 4 3.7031028 1.4571029 3.934 4 

Pb IVB 4 3.3131028 1.3191029 3.981 4 

 

Table 2Q4-1: Number of electrons donated by various elements 

As evident from the above table, the calculated number of electrons donated by one atom of 

the element is the same as the valency of that element and the position in the periodic table. 

 

2.12 

Solution 

a. Atomic concentration nat is 
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If we assume there is one conduction electron per Ag atom, the concentration of conduction 

electrons (n) is 5.862  1028 m-3, and the conductivity is therefore: 

   = end = (1.602  10-19 C)(5.862  1028 m-3)(56  10-4 m2 V-1s-1) = 5.259  

107 -1 m-1  

and the resistivity,  = 1/ = 19.0 n m 

The experimental value of   is 16 n m. We assumed that exactly 1 "free" electron per Ag 

atom contributes to conduction. This is not necessarily true. We need to use energy bands to 

describe conduction more accurately and this is addressed in Chapter 4. 

b. From the Wiedemann-Franz-Lorenz law at 27 C, 

   = TCWFL = (5.259  107 Ω-1 m-1)(27 + 273 K)(2.44  10-8 W  K-2) 

i.e.   = 385 W m-1 K-1 

For pure metals such as Ag this is nearly independent of temperature (same at 0 C). 

 

 



2.20 

Solution 

a. The Hall coefficient, RH, is related to the electron concentration, n, by RH = -1 / (en), and is 

defined by RH = Ey / (JB), where Ey is the electric field in the y-direction, J is the current 

density and B is the magnetic field. Equating these two equations: 
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This electric field is in the opposite direction of the Hall field (EH) and therefore: 

  EH = -Ey 
JB

en
        (1) 

The current density perpendicular (going through) the plane W  D (width by depth) is: 
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I
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I
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The Hall voltage (VH) across W is: 

  HH WEV   

If we substitute expressions (1) and (2) into this equation, the following will be obtained: 

  
Den

IB
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Note:  this expression only depends on the thickness and not on the length of the sample. 

 In general, the Hall voltage will depend on the specimen shape. In the elementary 

treatment here, the current flow lines were assumed to be nearly parallel from one end to the 

other end of the sample. In an irregularly shaped sample, one has to consider the current flow 

lines. However, if the specimen thickness is uniform, it is then possible to carry out 

meaningful Hall effect measurements using the van der Pauw technique as discussed in 

advanced textbooks. 

b. We are given the depth of the film D = 1 micron = 1 m and the current through the film I 

= 100 mA = 0.1 A. The Hall voltage can be taken to be VH = 1 V, since we are looking for 

the magnetic field B per V of Hall voltage. To be able to use the equation for Hall voltage in 

part (a), we must find the electron concentration of gold. Appendix B in the textbook contains 

values for gold’s atomic mass (Mat =196.97 g mol-1) and density (d = 19.3 g/cm3 = 19300 

kg/m3). Since gold has a valency of 1 electron, the concentration of free electrons is equal to 

the concentration of Au atoms.  
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Now the magnetic field B can be found using the equation for Hall voltage: 
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  B = 0.0945 T 

As a side note, the power (P) dissipated in the film could be found very easily. Using the 

value for resistivity of Au at T = 273 K,  = 22.8 n m, the resistance of the film is: 
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The power dissipated is then: 

  P = I2R = (0.1 A)2(0.228 ) = 0.00228 W 

 


